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1 Introduction

There is a growing consensus that Europe’s electricity sector must be nearly or completely Transforming the
electricity sectorcarbon-free by the middle of this century. This will need to be achieved with a combination

of a substantial amount of renewable energy and perhaps nuclear power and/or the use of
fossil fuels with carbon capture and sequestration. The current approach is to regulate CO2
emissions through the EU-ETS and provide additional stimulus for renewable energy. The
latter policy is implemented at the national level, as a result of which there is considerable
heterogeneity in these policies (although there appears to be a tendency towards feed-in
tariffs). In addition, countries have specific policies regarding the use of nuclear fuels,
the combustion of coal and carbon capture and sequestration. The resulting variety of
electricity market policies is further compounded by differences in basic electricity market
design, for instance with respect to transmission regulation, congestion management and
the balancing mechanism.

The central question in this research is what the combined effect is of different policy Understanding complex
market behaviorinstruments (in particular carbon policy and renewable energy policy) upon an electricity

market, in isolation and in combination with neighboring electricity markets with different
policies, are. What happens when two interconnected electricity markets, both participat-
ing in the EU-ETS, have different renewable energy policies? What if one of these decides
to phase out nuclear power? What would be the effect of a minimum price for CO2? What
if this were implemented in only one country?

While the EU-ETS is an effective instrument for allocating CO2 emission reductions EU-ETS

among large producers in Europe, it has failed to trigger the kinds of long-range invest-
ments that will be necessary for achieving substantial emissions reductions in the future.
Two reasons can be given for this failure. The first is that the ETS does not provide a strong
enough investment incentive, in part because the average CO2 price is too low, and in part
because the CO2 price is too volatile. The second reason is that investment decisions are
also affected by carbon and renewable energy policy, the design of the electricity market
(especially a capacity mechanism may have a strong impact), availability of locations for
new plant, permit restrictions etcetera.

A second issue of concern is the phenomenon that electricity prices can be expected to Electricity prices

become more volatile as low-carbon electricity generation technologies gain market share,
because their marginal costs of generation tend to be relatively low. As a result, electricity
prices can be expected to be below average cost during periods with ample generation ca-
pacity, which means that peak prices will need to be higher for power companies to recover
their costs. This higher volatility is likely to discourage investment in capital-intensive
technologies, slowing down the desired investment in many low-carbon technologies.

To address these issues, a dynamic simulation model will be developed. Equilibrium Research approach

models do not capture the intertemporal relations (which exist due to path dependence)
that affect the long-term development of the electricity sector. This model will need to be
suitable for incorporating multiple policy instruments and multiple, connected electricity
markets. Finally, the model will need to include a rich representation of investment behav-
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1. Introduction

ior and the diversity of investment strategies that may be observed in a market. For these
reasons, we have chosen to use the relatively new technique of agent-based modeling. This
approach has only been applied to a limited degree to European electricity markets. A
great benefit of agent-based modeling is that it is not necessary to make a priori assump-
tions about how the system reacts to policy changes. Policies are modeled as closely to
reality as possible while agent behavior is determined by the decision rules that are pro-
grammed and the results are an emergent property of the model.

Instead of capturing aggregate behavior of market parties in formulas, in an agent-Agent-based modeling

based model individual actors are modeled. In our model, we model electricity generation
companies as agents who act independently from each other. Other agents may be in-
cluded, such as a an agent that represents the government. The companies sell the power
that they produce and make investment decisions. Therefore the model allows us to in-
clude assumptions about risk aversion and strategic behavior, for instance. The model
output is not the result of equation-based calculations, but is an emergent property of the
combined actions of the various agents. Thus the model resembles a virtual laboratory:
given a certain context (physical constraints, technological options, energy prices, electric-
ity demand), the agents (e.g. power companies) independently make their decisions. While
the agents are confronted by the consequences of each other’s decisions (such as the con-
struction of new power stations), each agent makes its decisions independently from the
others. The model can be run under a variety of scenarios in order to obtain insight in the
variety of possible outcomes of a certain combination of policies and exogenous conditions.

Because the object of the model is not to make detailed analyses or forecasts, but to gainFocus

insight in the long-term dynamic behavior of European electricity markets, the model is not
intended to provide a realistic representation of a specific European electricity market or of
the entire EU power market. However, it is possible to upload scenarios that include the
generation plant portfolios of specific countries.

With this project, a new avenue in model-based policy support is explored. By develop-Economic and social
relevance ing an agent-based model of an energy market, it will be possible to model the ‘messiness’

of reality better, as the interactions and compound impacts of multiple policy instruments
can be modeled. Theoretic analyses about the optimal effects of policy instruments can
thus be supplemented with analyses about transition effects, interferences between instru-
ments and other more practical issues with potentially strong economic and environmental
effects. This is expected to deepen our understanding of real-world interactions between
policy instruments and markets.

This report describes the base model, which enables to simulate two interconnectedBase model

electricity markets in typical European countries (Chappin et al., 2012). Using and
analysing this model implies the effects upon CO2 emissions, the volume of electricity gen-
eration, the price of electricity and the generation mix, and the effect upon investment in
renewables. With this basis, we will for instance be able to address the following questions:

• How would the electricity market develop, given the current ETS, reasonable reduc-
tions of the CO2 cap, but no further policy changes?

• To what extent would an increase in renewable and nuclear energy cause electricity
prices to become more volatile?

• What would be the effects of measures to reduce investment risk in the CO2 market
(e.g. a price floor for CO2) and in the electricity market (e.g. the introduction of a
capacity mechanism)?

• What are the effects upon investment of other factors such as subsidies for large
energy consumers, RES-E policies, subsidies for CCS pilots and the cost of capital
(which has recently risen significantly)?

In Chapter 2, the base model is described. Chapter 3 contains details regarding imple-
mentation.
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2 Description of the Agent-Based
Model

2.1 Overview

The model is designed to analyze the aggregate effects of investment decisions of electric- Object

ity generation companies under different policy scenarios and market designs in order to
assess the possible effects of different policy instruments on the long-term development of
European electricity markets. Because the simulations span several decades, the time step
of the model is one year. The model provides insight in the types of consequences that
may be expected from different policy measures and, importantly, from combinations of
policy measures; it is not intended for estimating precise future values of prices, emissions
or other quantities.

The drivers of change in the model are changes to exogenous factors, such as fuel prices Drivers of change

and electricity demand, and policy changes. In a static environment, a policy change such
as a reduction of the CO2 emissions cap would lead to a new equilibrium with more low-
carbon generation technology. However, in an environment with continuously changing
exogenous factors, the long construction time of new power plant and their long life span
have as a consequence that electricity markets are not likely ever to be in an investment
equilibrium. This is also the case in our model. As relative prices change, the agents’
preference for generation technologies shifts. The key question is which sets of policies lead
to the desired levels of CO2 abatement and how can costs most likely be minimized, given
the range of scenarios.The model provides insight in the effectiveness of policy measures
in stimulating desired investment behavior under the realistic conditions of ever-changing
exogenous conditions.

The main agents in the model are the electricity generation companies. In the model, Agents

they make decisions about the price at which they sell their electricity and about investment
and disinvestment in generation plants. They purchase fuels at exogenously determined
prices, i.e. they are price takers in these markets. The agents base their power plant dis-
patch on the prices of fuel, electricity and CO2, while for their investment decisions they
also consider estimates of future prices, the costs of different generation technologies and,
if the modeler desires, other factors such as risk aversion or a preference for specific gener-
ation technologies such as renewable energy.

The electricity and CO2 market are the main arenas in which the agents interact. In Markets

order to simulate the realities of European electricity markets, the model contains multi-
ple (in first instance two) electricity markets with limited interconnector capacity between
them. There is a single CO2 market including the banking of generators. The electricity
markets are modeled as power exchanges. They are cleared simultaneously, including a
market splitting algorithm for the allocation of interconnector capacity. An iterative pro-
cess is used to simulate arbitrage between the electricity and CO2 markets (the current spot
market and an expected future market).

3



2. Description of the Agent-Based Model

When agents construct a new power plant, they can choose from a range of generationElectricity generation
technologies technologies. Innovation of these technologies is simulated as a gradual decline of costs

and improvement of performance (such as fuel efficiencies). To the extent possible, these
trends have been calibrated with empirical data. Established technologies, such as gas, coal
and nuclear power, develop more slowly than newer technologies such as wind energy or
carbon sequestration technologies.

The model has been developed to test (combinations of) carbon policies and renewablePolicies

energy policies in interconnected markets, given different assumptions regarding invest-
ment behavior. The baseline carbon policy is an emissions trade scheme that is based on
the EU ETS. A minimum carbon price can be included in this scheme. Instead, or in addi-
tion, a carbon tax can be implemented. Renewable energy policy instruments can be added
to the model. Capacity mechanisms are another type of policy instrument that affect in-
vestment behavior and that can be included.

Because the future prices of fuels and the growth of electricity demand are uncertain,Analysis of model
results the model is run a number of times for different scenarios. Within each scenario, these

input parameters are varied stochastically based on a number of exogenous scenarios. The
results therefore need to be analyzed statistically.

The following assumptions underlie the model:

1. Fuel is always available. There is an unlimited supply of biomass and natural gas.
2. Fuel prices are exogenous and reflect the relative scarcity of fuels. The modeled sys-

tem is too small to impact world fuel prices.
3. Biomass is assumed to be 100% carbon-neutral. In our model, biomass represents the

general characteristics of renewable energy: carbon-free, but more expensive.
4. The main characteristics of Phase 3 of the EU ETS (2013 and beyond) are included:

100% of CO2 emission rights are auctioned and the cap will decrease over time.
5. The effect of inter-sector emissions trading is assumed to be negligible compared to

intra-sector trade.
6. Innovation is limited to learning; available technologies gradually improve in terms

of cost and performance, entirely new technologies do not become available in the
model.

7. All costs and prices are in constant 2011 Euros. Electricity prices are wholesale prices;
taxes and network fees are not included.

Figure 2.1 provides an overview of the model. Before the start of the simulation, a sce-
nario file is uploaded which specifies the time series data (such as fuel prices), demand
functions, generation technologies, generation portfolio’s and the parameters of policy in-
struments such as the CO2 cap or tax level. Within each time step (which is one year),
the electricity markets are cleared for each section of the load-duration function. If a CO2
market is implemented, the CO2 price is determined in an iterative process with electricity
market clearing: the price is adjusted until the emissions just match the cap (and the expec-
tations regarding future emissions). Each time step, agents also decide whether to invest in
new plant and whether to dismantle old plant and they buy CO2 credits, if applicable.

2.2 Agents

The main agents in the model are the electricity generation companies (domain.agent.-Strategic decisions of
producers EnergyProducer). Other agents and their complexity level are given in Table 2.1. Besides

the ElectricitySpotMarket and the EnergyProducer they have rather simple behaviour or
exist mainly for accounting reasons.

The number of power generation companies can be chosen by the modeler, as well as
the size and consistency of their power plant portfolios at the start of the simulation. The
generation companies need to make the following types of strategic decisions:
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2. Description of the Agent-Based Model

Agent Names Complexity Class

Energy Producer High domain.agent.EnergyProducer
TargetInvestor Simple Rules domain.agent.TargetInvestor
PowerPlantManufacturer Accounting domain.agent.PowerPlantManufacturer
PowerPlantMaintainer Accounting domain.agent.PowerPlantMaintainer
BigBank Accounting domain.agent.BigBank
CommoditySupplier Accounting domain.agent.CommoditySupplier
EnergyConsumer Accounting domain.agent.EnergyConsumer
Government Simple Rules domain.agent.Government
NationalGovernment Simple Rules domain.agent.NationalGovernment
ElectricitySpotMarket High domain.market.electricity.ElectricitySpotMarket
CommodityMarkets Simple Rules domain.market.electricity.CommodityMarket

Table 2.1 – Agents in EMLab-Generation and their complexity level. Adapted from Richstein et al.
(2015b).

• Investment. The agents decide whether investing in a new power generation facility
is sufficiently attractive to them. Agents invest when a new power plant appears
attractive enough; see Section 2.7 for a description of the investment algorithm.

• Technology type. If agents decide to invest, they need to choose a type of electricity
generation technology.

Apart from strategic management, power generators make the following operationalGenerators’ operational
decisions decisions:

• Sell electricity. Generation companies offer their electricity to the power exchange at
marginal cost plus a price markup, which is assumed to exist due to market power.
The marginal cost of generation is derived from fuel and CO2 prices.

• Purchase fuel. Based on actual electricity production, the required fuel is determined
and acquired. In case of multi-fuel power plants, agents optimise their fuel consump-
tion based on expected fuel prices.

• Acquire CO2 emission rights. The volume of CO2 emission rights that generation
companies purchase is determined in an iterative process in which the arbitrage be-
tween the electricity and CO2 markets is optimized. See Section 2.6 for a description.
The assumption is that the short-term electricity and CO2 markets work optimally
and that arbitrage between them also is optimal.

A single consumer agent represents the aggregate demand of all domestic consumersConsumer agent

for electricity. The yearly demand depends on the scenario (see below).

2.3 Generation technologies

There is no restriction on the number of electricity generation technologies that can beAvailable technologies

used in this model. For simplicity’s sake, however, we start the model with the following
technologies.

• Coal (with optional biomass co-firing) with and without CCS

– Pulverised Super Critical (PSC)
– Integrated Gasification Combined Cycle (IGCC)

• Biomass
• Gas

– Open Cycle Gas Turbine (OCGT)
– Combined Cycle Gas Turbine, with and without CCS (CCGT)
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2.4. Intermittent energy sources, August 28, 2015

• Nuclear Power
• Wind

– Onshore
– Offshore

• Photovoltaic

The main attributes of power plants that are modeled are fuel efficiency, investment
cost, operating and maintenance (O&M) cost, maximum load, lifetime and construction
time.

We use typical cost and technology characteristics of existing generation plants (or, in Innovation

case of coal with CCS, a plausible estimate). The specific assumptions are described in
Appendix A. In the model, the efficiency of new power plants improves gradually over
time (resulting in lower fuel consumption and CO2 output per MWhe produced). For new
technologies such as wind and CCS, these learning rates develop more quickly than for
existing ones. Capital and operating costs of new plants also decline, but during the course
of a plant’s lifetime, its fixed operating and maintenance costs increase, first gradual and
then more strongly after its nominal life span has elapsed.

2.4 Intermittent energy sources

Intermittent energy sources such as wind and solar energy present a challenge to a long- Short-term effects in a
long-term modelterm model. In order to represent prices and the need for capacity realistically, the inter-

mittancy of wind needs to be represented in the model. This is a short-term effect, but in
order to reduce run-time and complexity, the model abstracts from the details of short-term
power system operation and price formation. However, the effects of intermittent sources
on prices and the load factor of thermal plant cannot be ignored. As the availability of
these resources cannot be controlled, their contribution to meeting peak generation capac-
ity needs is limited. Instead, we model the impact that intermittent resources have on each
step of the load-duration function.

Approximation of
intermittencyIn our model, we approximate this effect by letting intermittent resources contribute dif-

ferent ratios of their nameplate capacity for different segments of the load-duration curve.
To take onshore wind as an example, it only contributes 5% of its capacity during peak
hours, but up to 40% of their nameplate capacity during the lowest segment of the load-
duration function. In the load-duration segments in between, the contribution of intermit-
tent resources is scaled linearly, and calibrated in such a way, that full load hours during
one year correspond to empirical values. In this way, When there is much investment in
intermittent resources, the model will reflect the limited contribution to peak generation
capacity, while the load factor of fossil plants will decrease.

2.5 Power plant operation and spot market bidding

The algorithms described in the section can be found in the classes role.operating-
.DetermineFuelMixRole and role.market.SubmitOffersToElectricity-
SpotMarketRole.

Generation companies dispatch their power stations in strict merit order . Outages, start- Dispatch and fuel mix

up costs and ramp rates are not considered. They base their bids in the market on the
available capacity and the variable costs (including the price of CO2) of their plants. Some
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2. Description of the Agent-Based Model

types of power plant can run on multiple fuels. A common example is coal with biomass,
but more innovative technologies such as multi-fuel natural gas/coal gasification/biomass
gasification plants can be added. The fuel dispatch of these plants is optimized for fuel and
CO2 prices and the energy densities of the fuels.

The fuel mix of multi-fuel power plants is determined in iteration with the market clear-
ing algorithm. This is to ensure that the fuel mix decision of multi-fuel power plants are in
equilibrium with market results (especially with the CO2 price) and reflects the ability of
power plant generators in reality to adjust the fuel mix during the year according to CO2
and fuel prices.

The fuel mix is determined with a linear program that uses current fuel prices (which
are known), the current CO2 price (see the next section), power plant efficiencies and the
fuel mix constraints given in Table ??. The resulting variable fuel costs vcg,t per MWhel for
power plant g in time step t are then determined as the product of the volumes of the fuels
( f ) in fuel mix sg, f ,t and the fuel prices p f ,t:

vcg,t = ∑
f

p f ,t · sg, f ,t

ηg
(2.1)

Assuming that variable power plant costs are solely determined by their fuel costs, andBidding

that all generators can exercise market power, the bidding strategy (cf. equation 2.3) for all
agents is defined as:

pz,s,g,t = vcg · (1 + m) (2.2)

We assume the price mark-up to be 10% for all generators, following the example of Eager
et al. (2012). To start of the market clearing algorithm in the first iteration last years CO2
price is used.

2.6 The electricity and CO2 market algorithms

The algorithm described in the section can be found in the class role.market-
.ClearIterativeCO2AndElectricitySpotMarketTwoCountryRole in the
method clearIterativeCO2ElectricitySpotMarketAndFutureMarket-

TwoCountryForTimestepAndFuelPrices . The text was updated by including
verbatim model descriptions by Richstein et al. (2014) that introduce banking.

In this section we will describe how the electricity and CO2 markets are cleared. TheOverview of Iterative
Process time step of the model is one year. There are two interconnected electricity markets with a

number of generators (chosen by the modeller, and dependent on the scenario), distributed
over these markets. Electricity demand is represented by a step-wise load-duration func-
tion which is different per modeled price zone. Electricity prices may thus vary between
markets if the interconnector is congested. The number of steps can be varied in the model;
the higher the number, the more refined the representation of demand, but the slower the
model. The supply function is constructed by placing the generator bids in merit order.
Generators base their bids on the price of CO2 (in the first iteration, this is the previous
year’s CO2 price) and the exogenously determined fuel prices. CO2 emissions are con-
strained by the annual emissions cap, . As perfect trade in CO2 is assumed between these
markets, so that the CO2 price is the same in all markets in the model. It is assumed that
the ’consumption’ of CO2 credits can be arbitraged perfectly between the different hours
of a year; therefore, there is only one CO2 price in each year. An iterative process is used
to find the market prices of electricity and CO2. Given a certain starting value of the CO2
price, the markets are cleared. When the emissions are higher than the cap, the CO2 price
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2.6. The electricity and CO2 market algorithms, August 28, 2015

is increased and vice versa. The electricity markets are cleared again, with the different
CO2 price leading to an adjustment in emissions. This process is repeated until the CO2
emissions are equal to the emissions cap. The different steps are described in more detail
below.

Each generation company submits its electricity bids, one price-volume pair per power Electricity Market
Biddingplant g for each segment s of the load-duration function according to Section ??. This also

includes updating the fuel mix according to the CO2 price of the current iteration. They
only bid into the electricity market in which their power plant is located (zone z). The
bidding strategy is described in Section 2.5.

bz,s,g,t = (pz,s,g,t, Vz,s,g,t) (2.3)

The bids of the power generators are than universally adjusted for a given, identical CO2 Price adjustment

CO2 price pCO2,t and the complimentary CO2 tax TCO2,z,t, as well as the the emission inten-
sity eg,t of the power plant, so that the costs of CO2 emission are accounted for in the bid.
In the first iteration round, the CO2 price of the last year is taken.

bCO2
z,s,g,t = (pz,s,g,t + (pCO2,t + TCO2,z,t) · eg,t, Vz,s,g,t) (2.4)

If a complimentary tax is implemented, it is set to create a CO2 price floor FCO2,z in zone
z:

TCO2,c = max(0, FCO2,z,t − pCO2,t) (2.5)

In principle, the electricity markets in the model are than cleared the same way as real Electricity market
clearingpower exchanges. For each segment in the load-duration function, price and volume are

determined by the intersection of supply and demand. The generator bid pairs including
the CO2 costs are sorted from low to high price and the intersect of the resulting supply
function with demand (which is presumed inelastic) determines the price and volume of
electricity sold. The markets are cleared independently for every step of the load-duration
functions, yielding a step-wise price-duration function with the same number of steps as
the load-duration function. In each segment the highest accepted bid (that is needed to
satisfy demand) bCO2,∗

z,s,g,t = (pCO2,∗
z,s,g,t , V∗z,s,g,t) sets the market clearing prices p∗s,tfor segment s.

In case demand Ds,t in segment s cannot be satisfied, the clearing price is set to the value of
lost load.

The market clearing algorithm, as described above, is first run for all zones in the model Congestion
managementtogether. This implies the assumption that there is no congestion between the zones and

results in a single electricity price for all zones together. If the resulting flows over the
interconnectors exceed available capacity, the congestion is managed by means of market
splitting. (In the simplified environment of this model, the outcome is the same as if market
coupling were applied.) We will now describe the congestion management algorithm for
the case of two zones. In case of congestion, the markets are cleared separately for each
zone. In the exporting (low price) zone, the demand is increased until the interconnector
is fully utilized. This additional demand is subtracted from the demand in the importing
(high priced) zone. The market clearing price p∗z,s,t is thus the highest accepted bid bCO2,∗

z,s,g,t =

(pCO2,∗
z,s,g,t , V∗z,s,g,t) for Zone z and segment s that is needed to fulfil the adjusted demands D∗z,s,t

in segment s in zone z. This causes the market prices to move closer together and reduces
the average cost of generation.

In case that the CO2 market is active in the model the steps described above are carried Expected electricity
market clearingout for an electricity market forecast in three years (taking into account power plants under

construction and dismantlement), except that the CO2 price, used to clear the market, is
compounded to p̂CO2,t+3 = pCO2,t · (1 + iB)

3. The discount rate iB is set to 5%, which lies
in the reported range of interviews done by Neuhoff et al. (2012). As input data for the
electricity market forecast, fuel price and demand trend forecasts for three years ahead are

9



2. Description of the Agent-Based Model

calculated. The applied regression methodology is described in Section ??. The past 5 years
are used as input data for the regression.

The market results lead to a certain (optimal) generation unit commitment of powerCO2 emissions in one
iteration plants (V†

z,s,g,t denotes the production of a power plant), from which the resulting CO2
emissions of the current market and the market forecast are determined.

Et = ∑
z,s,g

V†
z,s,g,t · eg,t

Êt+3 = ∑
z,s,g

V̂†z,s,g,t+3 · eg,t+3
(2.6)

The clearing emission cap is given by the sum of the emission cap CCO2,t of the currentCO2 market clearing
iteration algorithm year, by the emission cap in three years time CCO2,t+3 and the difference to the banking

target divided by a revision speed factor ∆TB,t/r. The banking target is determined by
assuming that producers aim to hedge 80% of expected emissions in the coming, 50% in
two and 20% in three years time. The expected emissions of Et+1 and Et+2 are determined
by linear interpolation between Et and Et+3. This banking rule is based on a study done by
? and an interview series by Neuhoff et al. (2012). To allow some flexibility in returning to
the banking target a revision speed factor r of r = 3 is used.

CCO2,t + CCO2,t+3 + ∆TB,t/r = Et(pt,CO2) + Êt+3(pt,CO2 ∗ (1 + iB)
3) (2.7)

If the CO2 emissions exceed the clearing emissions cap, the CO2 price pCO2,t is raised,
and vice versa if the emissions are below the cap, and steps 2) through 5) are repeated.
The iteration stops and the market is considered to be cleared when the emissions are ap-
proximately equal to the CO2 cap, when a price minimum (0 or global price floor) or price
ceiling CCO2,t is reached. In scenarios without a price ceiling, a constant maximum price of
e 500/ton is assumed1. Alternatively if the maximum number of iterations is reached, the
last value of pCO2 is used. We apply a tolerance band of±3% in order to finish the iteration
in a timely fashion.

Depending on whether the clearing emission cap is approximately reached, or if theDetermination of
banked CO2 permits lower of the national (or a common) price floor is sufficient to lead to emissions below the

cap, the banked allowances are adjusted. In case the cap is approximately reached, the sum
of banked allowances by all agents is adjusted by the difference between the emission cap
of the current year and the emissions in the current year (∆Bt = CCO2,t − Et). In case that
the lower of the two emission floors is sufficient to lead to sub-cap emissions, the difference
to the overall banked emissions is given by the difference to the banking target divided by
the revision speed factor ∆TB,t/r. Thus, the lower of the price floors (or a common price
floor) is simulated as a reserve price at which agents buy or sell2 their credits to reach their
hedging target. If more permits would be consumed than are banked, the target search
algorithm is run for only the current period. The banked permits are assigned to agents
according to their share in overall emissions. The difference to the previous years banked
credits affects their cash position at the current year’s permit prices. The agents start the
simulation with 500 million CO2 certificates already banked, which is at the upper limit of
the estimation by Neuhoff et al. (2012).

1At that point the last fuel switching alternatives under most price scenarios are exhausted.
2Assuming that the reduction in banked allowances is not so large that it will depress secondary market prices

below the reserve price.
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2.6. The electricity and CO2 market algorithms, August 28, 2015

Variable Unit/Content Description

t a Time step, in years
z {CWE,GB} Zone index
Ss,z (Ds, ls) Segment is a tuple of demand and length
Ds,z MW Demand in Segment S
ls h Length of Segment S (identical for both countries)
s {1, . . . , 20} Segment index
LDCz,t {Sz,1, . . . , Sz,20} Load Duration Curve with 20 segments
bz,s,g,t (pz,s,g,t, Vz,s,g,t) Bid into zone z, segment s, year t for power plant g, excluding

CO2 cost
pz,s,g,t e/MWhel Bidded price
Vz,s,g,t MWh Bidded energy
V†

z,s,g,t MWh Energy produced (of an accepted bid)
p∗z,s,t e/MWhel Segment clearing price
bCO2

z,s,g,t (pCO2
z,s,g,t, Vz,s,g,t) Bid adjusted by the iterative CO2 target search.

g {1, . . . , G} Power plant index
eg,t tCO2 /MWh Emission intensity of power plant g in time step t
pCO2 ,t e/ton CO2 Market Price
FCO2 ,z,t e/ton CO2 Price Floor in zone z
TCO2 ,z,t e/ton Complementary CO2 tax in zone z
CCO2 ,t e/ton Common price ceiling
Bt, ∆Bt ton Banked emission permits, difference in banked emission permits
iB Interest rate for compounding the CO2 price
TB,t, ∆TB,t ton CO2 permit banking target, and difference to it
r Revision speed factor towards the banking target
vcg,t e/MWhel Variable fuel costs of power plant g in t
f cg,t e Fixed costs of power plant g in t
p f ,t e/MWhth Price of fuel f in time step t
sg, f ,t MWhth Amount of fuel f in fuel mix in time step t
ηg Efficiency of power plant g
as,g Segment dependent availability of power plant g
m Price mark-up of generators
r̂g,s,t h Expected running hours of power plan g, in segment s, in year t
Ig e Investment cost of power plant g in t
WACC e Weighted average cost of capital

Table 2.2 – Notation
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2. Description of the Agent-Based Model

2.7 Investment algorithm

The outer algorithm that leads to several rounds of investment is contained in the class
role.market.DecarbonizationModelRole.

This calls per energy producer an agent-specific investment algorithm (defined in
the property investmentRole), which must be of the type role.investment.-
GenericInvestmentRole.

The specific investment behaviour discussed in this section is only one realisation
of possible investment behaviours and implemented in the class role.investment.-
InvestInPowerGenerationTechnologiesStandard.

In order to come to an investment process, where decisions by generator agents are in-Overview

fluenced by other agents’ actions, the investment are made sequentially in several rounds.
The investment process is stopped as soon as no agent is willing to invest any more, i.e.
further investments seem unattractive due to already announced power plants. To prevent
a continuous bias towards agents induced by the investment rounds, the order in which
agents invest is determined randomly in each year. Agents are assumed to finance a part
of their investment cost of a power plant from their cash flow, expecting a specific return
on equity ke,i, and finance the remaining investment cost from debt, at an interest rate kd,i
given by the bank. The loan is assumed to be payed back in equal annuities during the
depreciation period of the power plant.

The investment algorithm is based on the assumption that investors would like to in-Principle: NPV for
reference year vest to the point that their investment just makes a profit, but that they do not have perfect

information. In every time step, and each iteration of the investment rounds, each agent
considers the potential profitability of each type of generation technology. For each type
of generation technology, a simple approximation of a net present value (NPV) calculation
is made for a reference year which lies t years ahead of the year that the decision is made,
taking into account the required return on equity, the interest rate on loans, as well as the
debt ratio. In the intervening time, all generation technologies can be built, so all plants
that are under construction at the time of the investment decision are assumed to be com-
pleted in the reference year. The agents add the power plants that are under construction
to the existing generator set and subtract plants that will reach the end of their expected
lives. They also forecast demand, fuel prices and carbon prices for the reference year. From
these data, an expected price duration curve is made for each price zone, from which the
expected electricity and CO2 prices are calculated. From these prices and the expected fuel
costs, the expected operating profit of the proposed plant is calculated. In the following the
steps taken by the agents in each round of the investment cycle are described:

An agent who is considering an investment makes a small model of future supply andEstimating the
generator set in the

reference year
demand for the national market of the planned power plant. He estimates the future supply
function by adding the capacity of new power stations that are announced or already under
construction to the existing supply function and subtracting the capacity of the plants that
will probably have reached their technical end of life in the intervening time. The agent
makes the estimate only for his own country and ignores import and export possibilities.

The list of future generators thus contains the current generators, including plants un-
der construction that will be completed in year t + n, minus plants that reach their life end
before year t + n, in which t is the current year and n the reference year time horizon.

Future demand is estimated by taking the current load-duration function and on a perEstimating future
demand, fuel prices and

CO2 prices
segment basis forecast future demand by performing a linear regression. The expected
prices of coal, gas, and uranium are estimated in the same way as the future demand. CO2
prices are estimated using the same regression forecast, but than taking the average of this
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2.7. Investment algorithm, August 28, 2015
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Figure 2.2 – Structure of the investment algorithm
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2. Description of the Agent-Based Model

forecast and an average of past prices, to come to an final forecasting value.
For each section of the load-duration function the corresponding price is than estimated

as the variable cost of the marginal plant. Thus a price-duration function is determined that
has the same number of steps as the load-duration function (p̂∗z,s,t+n, ∀s).

The first question is whether an agent invests at all. Before considering the questionFirst criterion: financial
status of company of which technology might be profitable, an agent (or his financiers) decide whether he is

capable of paying the downpayment (typically 30% of the total capital cost).
The expected running hours in each segment r̂s,g,t+n are determined from the estimatedExpected running hours

future energy prices p̂∗z,s,t the variable costs v̂cg,t+n of the power plant and the segment de-
pendent availability rate as, which lowers running hours for intermittent renewable tech-
nologies. If the plant is expected to be in the merit order, i.e. variable costs are smaller than
expected prices, the running hours are the product of the segment length ls and segment
dependent availability as.

r̂s,p,t =

{
ls · as , p̂∗z,s,t+n ≥ v̂cg,t+n

0 , else
(2.8)

The sum of running hours is than compared to the minimum running hours of the
generation technology, and the investment decision only proceeds if this requirement has
been fulfilled.

The agent estimates a plant’s expected cash flow by subtracting the plant’s variableCash Flow Estimation

costs ĉv,p,t (based on the estimates of fuel and CO2 costs) from the estimated market price
p̂∗z,s,t for each segment s of the load-duration curve. Where the result is negative, the plant
does not run and operating profits are zero, due to the multiplication with zero running
hours r̂s,p,t+n (cp. Equation 2.8). This yields the expected operating cash flow CFOp,g in the
reference year t + n. For the final cash flow estimation the fixed cost of the power plant are
subtracted.

CFOp,g = CFg,t+n = ∑
s
(( p̂∗z,s,t+n − v̂cg,t+n) · r̂s,g,t+n · ag,s)− f cg,t+n (2.9)

In order compare power plants of different capacities κp with each other, the spe-Discounted Cash Flow

cific project net present value (NPV) of the considered power plant is calculated using the
weighted average cost of capital (WACC) as the interest rate. It is assumed that the total in-
vestment costs are spread linearly over the building time (0, . . . , tb), and that the cash flow
CF is representative for the life time of the power plant (tb + 1, . . . , tb + tD).

NPVg =
(

∑
t=0...tb

−Ig

(1 + WACC)t + ∑
t=tb+1...tb+tD

CFOp,g

(1 + WACC)t

)
/κg (2.10)

If positive NPVs exist,the power plant p with the highest specific NPVp per megawatt is
chosen for investment.

This investment algorithm is only a first approximation of investment behavior. A num-
ber of possible extensions present themselves.

An obvious extension is to calculate the NPV calculated for each year within (a certain
time horizon), as the expected cash flows may vary significantly. The price is that the run
time of the model will increase proportionally.

For better accuracy, cross-border flows should be taken into account in the NPV. This is
complicated, however, as it would require the agents to make forecasts of the results of the
congestion management in order to estimate their revenues.

The investment decision process itself is more complex than a simple NPV calculation.
Subjective factors such as risk aversion and technology preferences could be included in
the future.
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2.8. Exogenous scenarios, August 28, 2015

2.8 Exogenous scenarios

The electricity producers operate in a dynamic world which is represented by several ex- Modeling exogenous
trendsogenously determined trends: time series of fuel prices, electricity demand and carbon

policy parameters (emission caps or tax levels). We assume that the electricity producers
are price takers in these markets and therefore do not influence prices, nor can they influ-
ence electricity demand or policy decisions. In order to simulate the unpredictable nature
of fuel prices and demand growth we always perform Monte-Carlo analysis of at least 120
scenarios. These scenarios can either be generated within the simulation using triangular
distributions or supplied via CSV-files to the simulation. The second option has the advan-
tage that result are more reproducible. An R script has been developed which can generate
stochastic time series, that are mean reverting to a trend line and can be correlated with
each other.

2.9 Optional modules

2.9.1 Backloading and the market stability reserve

The algorithms described in the section can be found in the classes role.market-
.ClearIterativeCO2AndElectricitySpotMarketTwoCountryRole and role.-
co2policy.MarketStabilityReserveRole.

The text below is only slightly adjusted from Richstein (2015) and Richstein et al.
(2015b).

Backloading can be modelled by changing the volume of auctioned EUAs in the model. To
avoid model artificats that occur due to reliance on two reference (t and t + 3) years, the
action of backloading is smoothed over three years.

The MSR is closely modelled after the actual, proposed design, as described by Rich-
stein et al. (2015b). Before the electricity and CO2 markets are cleared, the MSR adjusts
the EU ETS cap for the current year t based on the volume of EUA allowances that were
banked two years ago. If the volume of banked EUAs is within a certain target corridor, the
MSR does not change the cap; otherwise, the cap is adjusted. In our model, we scaled the
target corridor linearly to the scope of the model (the electricity sectors of CWE and GB).
If the banked allowances in t− 2 are above the upper trigger, 12% of these allowances are
deducted from the EU ETS cap in the current year. If the banked allowances in t − 2 are
below the lower trigger, the MSR releases a fixed volume of EUAs.

The model’s CO2 market algorithm should be adjusted in two ways. First, it should
take into account the emergency price trigger by Richstein et al. (2015b). Second, the MSR
should be factored into the current emission cap and its effects should be included in agent
expectations for the future. This will influence the market equilibrium and therefore also
the current CO2 price.

If for more than six consecutive months the EUA price is above the average price of
the past two years, the MSR emergency price trigger releases a fixed volume of EUAs.
Since our model does not simulate events within one year, there are two possibilities for
implementing this rule. One is that a high price in the current year triggers a release of
credits in the following year. Alternatively, when the EUA price is above the trigger, the
EUA price finding algorithm is rerun with the release of EUAs for the current year. If the
released quantity is large enough to offset the shortage, this could cause the EUA price to
return to its normal level. We implemented the second option because its effect is more
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2. Description of the Agent-Based Model

direct; the potential avoidance of high prices is justified by the downward pressure on
prices that would be caused by the expectation of an emergency release.

To implement the MSR, the emission-clearing cap must be adjusted. When active, the
MSR changes the volume of auctioned EUAs, so equation 2.7 should reflect this change for
the current year as well as the expected change in the volume of auctioned EUAs in the
future. The original cap CCO2,t in the model is substituted by the sum of the original cap
and the action of the MSR in t (MSRt), which depends on the volume of banked EUAs two
years ago (Bt−2). The expected action of the MSR in three years time ( ˆMSRt+3) depends on
the expected banked EUAs in the next year Bt+1 (due to the two-year delay). Bt+1 is linearly
interpolated between the banked emissions of the current year Bt and the projected banked
emissions Bt+3 in three years time. Both Bt and Bt+3 are intermediate results available
during the iterative clearing of the CO2 and electricity markets. Thus the emission-clearing
cap from Section 2.6 is adjusted according to equation 2.11 to take the action of the MSR
into account:

CCO2,t + MSRt(Bt−2) + CCO2,t+3 + MSRt+3(B̂t+1) + ∆TB,t/ =

Et(pt,CO2) + Êt+3(pt,CO2 ∗ (1 + iB)
3)

(2.11)

2.9.2 Adaptive CO2 cap to renewable policy

The algorithms described in the section can be found in the classes role.market-
.ClearIterativeCO2AndElectricitySpotMarketTwoCountryRole and role.-
co2policy.RenewableAdaptiveCO2CapRole.

The text below is only slightly adjusted from Richstein (2015) and ?.

As discussed by Richstein et al. (2015a), two different rule-based cap adjustment mecha-
nisms based on the volume of subsidised renewable energy production that exceeds the
policy targets were implemented in EMLab-Generation. In the first, the SRES excess is
set in proportion to the total electricity production (TBA). In the second, it is only set in
proportion to unsubsidised electricity production only (RBA). We assume that implemen-
tation is based on observed data, which is available with a delay. Therefore, indicators of
the previous year’s data (electricity production, emissions and SRES) are used to calculate
the current year’s cap reduction. If the regulator would wish to adjust the cap in real time,
he would need to rely on forecasts and estimations.

The adjustment of the cap needs to be implemented in two parts of the electricity &
carbon market clearing. Firstly in the current cap CCO2,t,TBA or CCO2,t,RBA, which replaces
CCO2,t in Equation (2.7). This is a certain adjustment, because it occurs in the current year.
Secondly, in the future the expected cap ĈCO2,t+3,RBA or ĈCO2,t+3,TBA, depending on the,
replaces CCO2,t+3 in Equation (2.7). The expected cap adjustments needs to be estimated
from expected generation of renewables. The formulas that are used to implement the TBA
and RBA policy options in the current market are introduced in Section ??, by Equations
(??) and (??). The expected cap in t + 3 is calculated with the same equations but with
forecasts3:

ĈCO2,t+3,TBA = (1−
max(ĜSRES,t+2 − GSRES,Announced,t+2, 0)

Ĝt+2
) · CCO2,t+3,original (2.12)

ĈCO2,t+3,RBA = (1−
max(ĜSRES,t+2 − GSRES,Announced,t+2, 0)

Ĝt+2 − ĜSRES,Announced,t+2
) · CCO2,t+3,original (2.13)

3Denoted by a hat above the forecasted variables
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2.9. Optional modules, August 28, 2015

Since the renewable and overall generation in t+ 2 needs to be estimated, the values for
Ĝt+2, Ĝt+2 and ĜSRES,t+2 are linearly interpolated between the generation results current
market clearing (in time step t) and the future generation results of the market clearing in
time step t + 3 (which is a direct result of the market clearing algorithm). Since the RES in-
vestment targets are given in the model as absolute capacity, not as relative production tar-
gets, GSREG,Announced,t−1 and GSREG,Announced,t+2 need to be calculated as a counter-factual
scenario. This is done by scaling the production according to the ratio of the planned ca-
pacity to the actual installed capacity.

2.9.3 Risk averse investment based on historical profits

The outer algorithm that leads to several rounds of investment is contained in the class
role.market.DecarbonizationModelRole.

This calls per energy producer an agent-specific investment algorithm (defined in
the property investmentRole), which must be of the type role.investment.-
GenericInvestmentRole.

The specific investment behaviour discussed in this section is only one realisation
of possible investment behaviours and implemented in the class role.investment.-
InvestInPowerGenerationTechnologiesStandard.

The text below is only slightly adjusted from Richstein (2015).

In order to incoorperate an experience-based risk based adjustment of investment deci-
sions in EMLab-Generation, we implement a new objective function in the investment al-
gorithm. Instead of choosing the technology with the highest non-negative specific NPV,
as described in Section 2.7, Equation (2.10), the agents choose the technology which has
the highest risk adjusted value. Following the example of ? and ? the risk adjusted ob-
jective function is the sum of the risk-neutral NPV and the (historical) Conditional value
at risk (CVar), which is also called the mean excess shortfall. The CVar is defined as the
expected value of the α-tail of a profit distribution, i.e. the average of all the NPV with a
value that is lower than the α-quantile of the NPV distribution. For our simulation we only
take negative CVar values into account.

NPVRiskAdj,g = NPVg − β ·min(CVarHist,g,α, 0) (2.14)

The risk-aversion factor β defines the level of risk aversion of investors. A β of zero
corresponds to risk-neutral investors, whereas a very high β corresponds to an investor
who solely minimises the CVar value. We assume a mixed β distribution between the
agents. In each country there are four agents with β-values of 0.85, 0.95, 1.05 and 1.15.

The agents calculate the CVarHist,g,α from the historical distribution in the last years (1
to 4 years, varying between the agents) of the gross marginal profits of the power plants
of technology g that the investing agent owns. The gross marginal profit (GMP is defined
here as the revenue of the power plant on the electricity market minus the incurred variable
costs (fuel and carbon cost). Of these historical GMPs the average of the worst α are taken.
In case fewer than 20 historical observations of GMP exist, the worst GMP is taken. This
may lead to both over- or underestimation of the associated risks. The result is denoted
GMPCVar,α. Following Equations (2.9) and (2.10) the CVar is then calculated as follows:

CVarHist,g =
(

∑
t=0...tb

−Ig

(1 + WACC)t + ∑
t=tb+1...tb+tD

GMPCVar − f cg,t+n

(1 + WACC)t

)
/κg (2.15)
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https://github.com/EMLab/emlab-generation/blob/develop/emlab-generation/src/main/java/emlab/gen/role/investment/InvestInPowerGenerationTechnologiesStandard.java


2. Description of the Agent-Based Model

In order to include risk considerations for new technologies which the agents do not
own, one dummy power plant per technology that the agent doesn’t own is introduced to
the simulation via the investment algorithm. These power plants are set at a very small
capacity (0.001 MW), as to not influence market clearing and the finances of the agents.
Every year the dummy power plants are updated to reflect technological progress in the
new technologies. When the agents decide to build a new technology, the dummy power
plant is removed and the agents rely on “real” power plants for their investment decision.

2.9.4 Improved implementation of intermittent renewables
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3 Implementation in
AgentSpring

The consequence of policy intervention typically materialize by changing the behavior Policy support

of actors regarding their options, assets and decisions. That is a core reason in favour of
ABM, but it also highlights that the scope of models for policy decisions is relatively large.
The models need to be rich enough in order to properly represent the social, the technical
and socio-technical components and their interactions (Chappin, 2011). For policy support,
elaborate and diverse behavior of agents has to be possible. Models are data driven and
have to incorporate extensive behavior algorithms (Chmieliauskas et al., 2012).

The desire to open up models to a community of researchers, public and private prob- Open access models

lem owners, and the general public is an important approach to ventilate research results
to the public. It changes the role of models and simulations in the debate, and allows the
end user to explore, validate and experiment with the tools that researchers develop. In
addition, extendability and reusability of code is important, because it allows developed
models to become a basis around years of policy-supporting modelling research.

3.1 AgentSpring framework

There are many ABM frameworks in existence, some more popular than others. Although Modelling frameworks

it may have been possible to use and modify existing frameworks, we have taken up the op-
portunity to build the AgentSpring framework that would leverage off the new and pow-
erful open source libraries and changing software development paradigms. AgentSpring
is developed as an open-source tool. This implies that anyone can use and contribute to
the platform. AgentSpring is available online1. AgentSpring is based on Java technolo-
gies and runs on all popular operating systems (Linux, Windows, and Mac). AgentSpring
gets its name from and makes use of Spring Framework – a popular software development
framework, that promotes the use of object oriented software patterns (Johnson et al., 2009).
One such pattern calls for separation of data, logic and user interface (Krasner and Pope,
1988). Although the latter is an old concept, most modeling frameworks mix the three.
This may be reasonable for creating smaller models, but for a base electricity and CO2
model (see the application section) it will be ineffective in the long run. Developing and
using AgentSpring enabled us to build a model that is better maintainable and expandable.

3.2 User interface

AgentSpring is characterized by a web-based user interface. See figure 3.1 for a snapshot of Web-based user
interfacea running model. As a developer, AgentSpring runs as a local webserver (typically located

1AgentSpring can be found at https://github.com/alfredas/AgentSpring. At the time of writing, the current
version AgentSpring is 1.0.
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3. Implementation in AgentSpring

Figure 3.1 – Snapshot of the user interface of AgentSpring with the model running

at http://localhost:8080/agentspring-face/). This setup also allows AgentSpring to be ran
on a dedicated server that is securely opened up for external visits.

The interface allows to start, pause and stop the model, to change and create graphs
by writing queries and to observe a textual log. Additionally, the interface can be used to
select various predefined scenarios and to change key parameters in the model. A model
in AgentSpring can also be controlled from command line, with or without running the
AgentSpring user interface.

3.3 The system captured in a database

AgentSpring makes use of special way to contain the state of the modelled system. The
modelled system is captured in a so-called graph database, which is a database that uses a
graph structure of nodes, edges, and properties to represent and store information (Eifrem,
2009).

The complete state of the system at any point in time is considered a graph of ob-Graph database

jects and their relationships. AgentSpring allows the graph to scale to hundreds of agents,
millions of things and relations between them. The application of a database in ABM is
promising as it allows for a different representation of the system modeled: the structure of
the system – the objects and their interactions/relations – emerges and evolves. Capturing
the data and perserving it in a database, makes it flexible to save and search. It enables
efficient selection and finding by performing appropriate queries.

An example of a query could be to find all electricity spot markets for which theQueries

property valueOfLostLoad is higher than 500 e/MWh load lost and on which the loadDu-
rationCurve contains at lest 15 segments (see figure 3.2 for the relational diagram for this
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Figure 3.2 – The graph of possible relations for an electricity spot market, a relatively small example.
The grey box is the starting point. Solid arrows refer to an ‘is a’ relationship. Dashed arrows are either
property or a relation to another object. In this example an ElectricitySpotMarket is a Decarbonization-
Market, which is a DecarbonizationAgent. An ElectricitySpotMarket has (or can have) a property called
valueOfLostLoad, which is a double precision number. It also has the property loadDurationCurve, which
is a set of SegmentLoad objects. Graphs like these are part of the documentation (see below)

example, which is part of the documentation). Traditionally, this would be solved main-
taining a list of all spot markets in the model, looping over them and checking piece by
piece for both conditions. A query, however, will be easier to compose, shorter in code, and
it will be much faster. These advantages become even more relevant when queries span
various types of objects. It also allows for thinking differently about extracting information,
both for analysis of a running model as well as for the behavior of agents themeselves. An
example of a more complicated query would be one that calculates the average efficiency
of all PowerPlants that have a PowerGeneratingTechnology that uses fuels emitting CO2, of
which the EnergyProducer agent – the owner – has a positive cash balance.

3.4 Types of classes and other files

AgentSpring uses various types of Java classes and other files.
Domain classes are the definitions of things and their properties. For instance it contains Domain classes

the classes Agent and PowerPlant.
Role classes capture pieces of behavior, such as InvestInPowerPlantRole, that can be ex- Role classes

ecuted by specific types (or classes) of Agents (which are in the domain, EnergyProducer
in this case). Behavior typically results in new or changed information or objects that are
persisted in the database with the help of repositories.

Repository classes contain functions that deal with the interaction of typical model code Repository classes

and the database. For instance, findAllOperationalPowerPlants is a function in the Power-
PlantRepository, that executes a query to the database for all power plants, checks which
ones are operational (and are not unavailable, under construction or decommissioned),
and returns the result. Repositories also assist in updating current information or storing
new information.

Scenario xml files contain all data to define and initiate a simulation run. A scenario Scenario files

contains data, but also relations between objects. An example of data is parameters of
power plants, and a price trend for coal. An example of a relation that is captured in the
scenario is the fact that on a market for trading a specific substance a relation is made to the
substance coal that can be traded on this particular market. Furthermore, a coal supplying
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agent is connected to the market.

3.5 Modelling agents and their behavior

AgentSpring makes use of the concepts of roles to encode agent behavior in a modularModular behavior

way. Agents play their roles in the simulation by executing their in modules coded behav-
ior. Models are made by linking agents to such roles and composing a script that together
define the set of behaviors in the context of social situations. This makes AgentSpring
particularly suited to modeling complex socio-technical systems. AgentSpring decouples
agents, their behaviors and their environments. That enables to reuse the pieces, to com-
pose consistent new pieces. Experience has shown that only modular and reusable models
can accommodate changing scope and new research questions.

The roles that make up the behavior of agents have the following properties:Properties of roles

• A role is enacted by a specific class of agents.

• A role encodes a piece of behavior.

• Input for roles are the properties of the agent enacting the role, but also other parts of
the system. Queries are used to access the graph database and retrieve the informa-
tion needed for the behavior to be executed.

• The outcome of the behavior that is captured in a role implies a change in something
in the state of the system. This is then stored in the graph database.

• A role can initiate other roles, i.e. a hierarchy of roles can be developed.

• Roles do not interact with each other directly (apart from iniating other roles, see the
previous bullet).

3.6 Development and documentation

Typical software development practices enable version control of model through githubSoftware practices

(https://github.com/emlab/emlab-generation for the model described). This is connected
to a wiki-enabled interface to communicate between developers. Another practice in Java
coding is on writing documentation. Online documentation is generated based on the
structure of the code and the documentation written as part of the code. See figure 3.3
for a snapshot of the online documentation. The documentation is intuitive enough to find
your way and grasp both the structure and details of model in multiple ways. Links be-
tween classes are visualized and linked and for each function a graph is made what other
functions it uses and it is used by. The documentation supports modellers and the commu-
nity around models to understand and explore the structure of the model. It also enables a
platform to think about changes and different scenarios.
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Figure 3.3 – Snapshot of the documentation of the model as a website
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A Power plant and fuel data

A.1 Energy densities of fuels

We have used the following conversion factors in the power generation model (see Ta-
ble A.1).

Table A.1 – Conversion factors for power plants

Fuel Energy density

Biomass 15 GJ/ton
Coal 25 GJ/ton
Natural gas 0.0383 GJ/m3

Uranium 1,865,150 GJ/ton

A.2 Power plant data

See table A.2 for the data on power plants.
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B Sample load-duration function

The following load-duration function is used in the examples in this report and in some of
the model runs.

Table B.1 – Sample load-duration function

Segment Demand (MW)

1 24581
2 23280
3 22432
4 21764
5 21477
6 20768
7 20241
8 19586
9 18918

10 18243
11 17637
12 17074
13 16506
14 15957
15 15385
16 14874
17 14392
18 13957
19 13459
20 12628
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B. Sample load-duration function
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Figure B.1 – Sample load-duration curve
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